Math 125 Chapter 10/Sections: 10-1 Topic: Systems of Linear Equations

Definition: A linear equation is often in the form of $\boldsymbol{A} \mathbf{x}+\boldsymbol{B y}=\boldsymbol{C} \mathbf{z}$. When there are one or more linear equations, it is known as a \qquad of linear equations

Problems I:

As the CEO of a well-known automotive manufacturer, you and your team celebrated for manufacturing a total of 7 million cars of your top two selling models. The day after, you want to know how many of each model were sold for. From your assistant, they reported that model A and model B sold for a total of $\$ 150$ billion. Given that the costs of Model X and Y are $\$ 18,000$ and $\$ 24,000$ respectively.

Based on the description above, complete the following system of linear equations:

$$
\begin{gathered}
x+y=\ldots \\
\ldots+\ldots \quad y=\$ 150,000,000,000
\end{gathered}
$$

From the systems of linear equations formed, find the \mathbf{x} and \mathbf{y} intercepts for each line:

Plot the above points, graph the system of linear equations, find the intersection point, check the estimate.

Math 125 Worksheet

STEM Success Center

Problem II: From the system of linear equations formed in Problem I, use substitution to solve for \mathbf{x} and \mathbf{y}.

Problem III: From the system of linear equations formed in Problem I, use elimination by addition to solve for \mathbf{x} and \mathbf{y}.

Problem IV: Solve the following system using elimination by addition. Keep your answers in fraction form. When you are done, make sure the x, y, and z values satisfy the 3 equations.

$$
\begin{gathered}
12 x+2 y+3 z=97 \quad E 1 \\
-6 x+2 y+8 z=4 \quad E 2 \\
5 x-2 y-2 z=1 \quad E 3
\end{gathered}
$$

Math 125
Worksheet

Math 125 Chapter 10/Sections: 10-1 Topic: Systems of Linear Equations SOLUTIONS
Definition: A linear equation is often in the form of $\boldsymbol{A x}+\boldsymbol{B y}=\boldsymbol{C z}$. When there are one or more linear equations, it is known as a \qquad system of linear equations

Problems I:

As the CEO of a well-known automotive manufacturer, you and your team celebrated for manufacturing a total of 7 million cars of your top two selling models. The day after, you want to know how many of each model were sold for. From your assistant, they reported that model A and model B sold for a total of $\$ 150$ billion. Given that the costs of Model X and Y are $\$ 18,000$ and $\$ 24,000$ respectively.

Based on the description above, complete the following system of linear equations:

$$
x+y=7,000,000
$$

$18,000 x+24,000 y=150,000,000,000$
From the systems of linear equations formed, find the \mathbf{x} and \mathbf{y} intercepts for each line:

$x+y=7,000,000$		$18,000 x+24,000 y=150,000,000,000$	
x		x	y
x	y		150,000,000,000
0	7,000,000	0	24,000
			= 6,250,000
7,000,000	0	$\frac{150,000,000,000}{18,000}=8,333,333$	0

Plot the above points, graph the system of linear equations, find the intersection point, check the estimate.
$\mathrm{x}=3,000,000$
$\mathrm{y}=4,000,000$

Check:

$$
\begin{gathered}
\mathbf{x}+\mathbf{y}=\mathbf{7 , 0 0 0}, \mathbf{0 0 0} \\
3,000,000+4,000,000=7,000,000
\end{gathered}
$$

$18,000 x+24,000 y=150,000,000,000$
$18,000(3,000,000)+24,000(4,000,000)$

$$
=150,000,000,000
$$

STEM Success Center

Problem II: From the system of linear equations formed in Problem I, use substitution to solve for \mathbf{x} and \mathbf{y}.

1. $x+y=7,000,000$
2. $y=7,000,000-x$ \# Solve for y
3. $18,000 x+24,000(7,000,000-x)=150,000,000,000 \#$ Substitute y into the second equation
4. $18,000 x+168,000,000,000-24,000 x=150,000,000,000 \#$ Solve
5. $-6,000 x=150,000,000,000-168,000,000,000 \#$ Solve
6. $\quad \mathrm{x}=-\frac{18,000,000,000}{-6,000}=3,000,000$
7. $3,000,000+y=7,000,000$
8. $y=7,000,000-3,000,000=4,000,000$
9. $x=3,000,000$ and $y=4,000,000$

Problem III: From the system of linear equations formed in Problem I, use elimination by addition to solve for \mathbf{x} and \mathbf{y}.
\#Multiply by a common factor that will cancel one of the variables in the second linear equation

$$
\begin{gathered}
x+y=7,000,000 \\
(x+y=7,000,000) *-18,000 \\
(-18,000 x-18,000 y=-126,000,000,000) \\
\frac{+18,000 x+24,000 y=150,000,000,000}{0+6,000 y=24,000,000,000} \\
y=\frac{24,000,000,000}{6,000}=4,000,000 \\
x+4,000,000=7,000,000 \# \text { Solve for } \mathrm{x} \\
x=3,000,000 \\
\mathrm{y} \\
\text { system using elimination by addition. Keep vour }
\end{gathered}
$$

Problem IV: Solve the following system using eliminatıon by addition. Keep your answers in fraction form. When you are done, make sure the x, y, and z values satisfy the 3 equations.

$$
12 x+2 y+3 z=97 \text { E1 }
$$

\# Multiply by a common factor that will $\quad-6 x+2 y+8 z=4 \quad E 2 \quad$ \# Find value of y
cancel one of the variables in the second $\quad 5 x-2 y-2 z=1 \quad E 3$ equation. We cancel x.
$12 x+2 y+3 z=97$ E1
$-12 x+4 y+16 z=8 \quad 2 * E 2$
$6 y+19 z=105 \quad E 4$
\# Multiply by a common factor that will cancel variable x.
$60 x+10 y+15 z=4855 * E 1$
$-60 x+24 y+24 z=-12-12 * E 3$
$34 y+39 z=473 \quad E 5$
\# Find value of y or z. We find z.
\# Multiply by common factor
$204 y+646 z=3570 \quad 34 * E 4$
$6 y+19\left(\frac{732}{412}\right)=105 \quad E 4$
$y=\left(\frac{7338}{103}\right) / 6$
$y=\frac{\frac{7338}{103}}{6}=\frac{1223}{103}$
\# Find value of x
$5 x-2\left(\frac{1223}{103}\right)-2\left(\frac{732}{412}\right)=1 \quad E 3$
$-204 y-234 z=-2838-6 * E 5$

Math 125
Worksheet
$412 \mathrm{z}=732$
$\mathrm{z}=\frac{\mathbf{7 3 2}}{412}$

